Machine learning: cosa serve per realizzare progetti di successo

Un modello di machine learning è l'output generato dopo aver addestrato il proprio algoritmo con i dati. Al Machine learning è stata dedicata la terza lezione di IBM AI School tenutasi il 23 ottobre 2020 [...]
Ibm si aggiudica Databand.ai: 12,9 milioni di dollari per la Data quality
  1. Home
  2. Intelligenza Artificiale
  3. Machine learning: cosa serve per realizzare progetti di successo

Nel mondo della tecnologia ci sono delle parole ricorrenti, che sono pronunciate e invocate da esperti e meno esperti, quasi se avessero poteri salvifici, spesso senza conoscere le reali dinamiche di funzionamento Una di queste parole è, sicuramente, il machine learning che, sull’onda della crescente attenzione verso l’intelligenza artificiale, si è imposto come uno dei topics del dibattito IT. Ma che cosa è esattamente il machine learning? Perché può essere realmente utile alle aziende? Quali sono gli ostacoli e le difficoltà alla realizzazione di progetti di successo? Partiamo dalle basi: il machine learning è un segmento della più vasta famiglia dell’intelligenza artificiale, che permette a un sistema di imparare dai dati piuttosto che attraverso la programmazione esplicita. Già questa semplice definizione permette di comprendere come l’implementazione di un progetto di machine learning non sia affatto semplice: per produrre risultati corretti e stabilire quelle correlazioni invisibili all’occhio umano, i sistemi di machine learning vanno opportunamente addestrati – spesso per mesi – a riconoscere le possibili correlazioni tra i dati. Soltanto dopo che un modello è stato addestrato, può essere utilizzato in tempo reale per l’apprendimento dai dati.

Il ruolo dei dati

Messa in altri termini, un’organizzazione non deve necessariamente disporre di big data per utilizzare le tecniche di machine learning; tuttavia, i big data possono contribuire a migliorare la precisione dei modelli di machine learning. Non a caso, l’esplosione del machine learning attuale è strettamente correlata all’avvento dei big data, ovvero dei grandi volumi di dati (strutturati e non strutturati) che possono essere utilizzati per addestrare al meglio i modelli. Il cloud e i miglioramenti della velocità di rete e dell’affidabilità hanno rimosso le limitazioni fisiche associate alla gestione di enormi quantità di dati a una velocità accettabile. Il deep learning, invece, è un metodo specifico di machine learning che incorpora reti neurali in strati successivi per imparare dai dati in modo iterativo. Il deep learning è particolarmente utile quando si cerca di apprendere i modelli da dati non strutturati. Le reti neurali complesse di deep learning sono infatti progettate per emulare il funzionamento del cervello umano, tanto da essere spesso utilizzati nelle applicazioni di riconoscimento delle immagini, di linguaggio e di visione artificiale.

Machine learning al centro della terza lezione di IBM AI School

Insomma, il machine learning non può essere improvvisato in azienda, ma necessita di tecnologie apposite: in questo senso va IBM Watson Machine Learning, una piattaforma che aiuta i data scientist e gli sviluppatori ad accelerare l’implementazione di AI e machine-learning. Grazie ai suoi modelli estensibili e aperti, Watson Machine Learning aiuta le aziende a semplificare e sfruttare l’AI in scala su qualsiasi cloud. In particolare Watson Machine Learning fornisce funzionalità per:
1) implementare modelli creati con IBM Watson Studio e strumenti open source, riaddestrare dinamicamente i modelli, generare automaticamente le API per creare applicazioni basate sull’AI
2) Gestire i modelli attraverso l’integrazione con IBM Watson Openscale
3) Semplificare la gestione e implementazione end-to-end dei modelli con un’interfaccia di facile utilizzo

Del Machine learning e delle potenzialità degli strumenti IBM si è parlato in occasione della terza lezione di IBM AI School, tenutasi il 23 ottobre 2020 (qui tutti i dettagli). La sessione è stata aperta, come di consueto, da una introduzione teorica volta a contestualizzare il tema nel mercato italiano e a raccontare esempi virtuosi realizzati negli ultimi mesi. Successivamente sono stati raccontati nel dettaglio tre use case reali ed è stato mostrato concretamente come la piattaforma IBM Watson accompagni in ogni passo della metodologia CRISP-DM per la data science. Durante la lezione è stato possibile interagire con partecipanti ed esperti, per capire come concretamente utilizzare le diverse soluzioni e risolvere le principali difficoltà legate all’implementazione del machine learning in azienda.
Watson Machine Learning - 23 ottobre - Registrati

FacebookTwitterLinkedInWhatsApp

7 Comments

  1. You could definitely see your expertise within the work you write. The sector hopes for more passionate writers such as you who are not afraid to mention how they believe. All the time follow your heart.

  2. Thank you for some other informative website. Where else may I get that kind of info written in such an ideal approach? I have a undertaking that I am simply now running on, and I’ve been at the look out for such info.

  3. Can I just say what a relief to find someone who actually knows what theyre talking about on the internet. You definitely know how to bring an issue to light and make it important. More people need to read this and understand this side of the story. I cant believe youre not more popular because you definitely have the gift.

  4. I love your blog.. very nice colors & theme. Did you create this website yourself? Plz reply back as I’m looking to create my own blog and would like to know wheere u got this from. thanks

10 Trackbacks / Pingbacks

  1. Come governare i dati con strumenti di machine learning - Big Data 4Innovation
  2. Oracle, storia e caratteristiche - Big Data 4Innovation
  3.   Business Intelligence: da analisi retrospettiva ad analisi predittiva - Big Data 4Innovation
  4. Digital government e Data-driven economy - Big Data 4Innovation
  5. Con il Transfer learning gli Small data avanzano nell'AI - Big Data 4Innovation
  6. Data virtualization: investire conviene - Big Data 4Innovation
  7. Manutenzione predittiva: cos’è ed esempi di predictive maintenance
  8. Cos'è il churn rate e come funziona - Big Data 4Innovation
  9. Datizzazione, il mondo fondato sui Big data e sull’AI - Big Data 4Innovation
  10. AI, machine learning e Big data: le nuove figure professionali richieste dal finance - Big Data 4Innovation

Lascia un commento

L'indirizzo email non sarà pubblicato.


*